
CSCI 3110 Assignment 1 Solutions

October 10, 2012

1. In each of the following situations, indicate whether f = O(g), or f = Ω(g), or both (in which case f =
Θ(g)).

f(n) g(n) Relation Reason
(c) 100n + log n n + (log n)2 f = Θ(g) Both are Θ(n)
(d) n log n 10n log 10n f = Θ(g) Both are Θ(n log n)
(e) log 2n log 3n f = Θ(g) Both are Θ(log n)
(f) 10 log n log(n2) f = Θ(g) Both are Θ(log n)

(g) n1.01 n log2 n f = Ω(g) n0.01 = Ω(log2 n)
(h) n2/ log n n(log n)2 f = Ω(g) n = Ω((log n)3)
(i) n0.1 (log n)10 f = Ω(g) Any polynomial = Ω() any log
(j) (log n)logn n/ log n f = Ω(g) 2log2 n = n so (log n)logn+1 = Ω(n)
(k)

√
n (log n)3 f = Ω(g) Any polynomial = Ω() any log

(l) n1/2 5log2 n f = O(g) 5log2 n = nlog2 5 and 1/2 < log2 5
(m) n2n 3n f = O(g) n = O((3/2)n)
(n) 2n 2n+1 f = Θ(g) n = Θ(n + 1)
(o) n! 2n f = Ω(g) n! > 2n for all n ≥ 4

2. Show that, if c is a positive real number, then g(n) = 1 + c + c2 + . . . + cn is:

(a) Θ(1) if c < 1.

We take the limit

lim
n→∞

g(n)

1
= lim

n→∞

∑n
i=0 c

i

1
= lim

n→∞

n∑
i=0

ci =
1

1− c

for c < 1. This limit is constant, so g = Θ(1).

(b) Θ(n) if c = 1.

We expand

g(n) = 1 + c + c2 + . . . + cn =

n∑
i=0

ci = n + 1 = Θ(n).

(c) Θ(cn) if c > 1.

Each term ci is dominated by cn for i < n, so g(n) = Θ(cn).

The moral: in big-Θ terms, the sum of a geometric series is simply the first term if the series is strictly
decreasing, the last term if the series is strictly increasing, or the number of terms if the series is
unchanging.

3. The Fibonacci numbers F0, F1, F2, . . . , are defined by the rule

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

In this problem we will confirm that this sequence grows exponentially fast and obtain some bounds on
its growth.

(a) Use induction to prove that Fn ≥ 20.5n for n ≥ 6.

We first establish the base cases n = 6 and n = 7.

n = 6 F6 = 8 ≥ 20.5·3 = 8.

n = 7 F7 = 13 ≥ 20.5·3 ≈ 11.3.

Now, assume that the claim holds for all n < k + 2. Then

Fk+2 = Fk + Fk+1

≥ 20.5k + 20.5k+0.5 =
(20.5 + 1)

2
20.5k+1 =

(20.5 + 1)

2
20.5(k+2)

≥ 20.5(k+2).

Therefore, by induction, Fn ≥ 20.5n for n ≥ 6.

(b) Find a constant c < 1 such that Fn ≤ 2cn for all n ≥ 0. Show that your answer is correct.

We use induction to prove that c = 0.9 works. We first establish the base cases n = 0 and n = 1.

n = 0 F0 = 0 ≤ 20.9·0 = 1.

n = 1 F1 = 1 ≤ 20.9·1 ≈ 1.86.

Now, assume that the claim holds for all n < k + 2. Then

Fk+2 = Fk + Fk+1

≤ 20.9k + 20.9k+0.9 = 20.9k(1 + 20.9) =
(1 + 20.9)

21.8
20.9(k+2) ≈ 0.82(20.9(k+2))

≤ 20.9(k+2).

Therefore, by induction, Fn ≤ 20.9n for n ≤ 6.

(c) What is the largest c you can find for which Fn = Ω(2cn)?

Let b = 2c. Then we consider the relation Fn+2 = Fn + Fn+1 and get bn+2 = bn + bn+1. This can be

rearranged as bn+2 − bn − bn+1 = 0. Solving for the roots of this equation gives b = 1±50.5
2 . Since b

cannot be negative, c = log2(b) = log2(1+50.5

2) ≈ 0.69.

4. (a) Show that two 2 x 2 matrices can be multiplied using 4 additions and 8 multiplications.

The formula to multiply two 2 x 2 matrices is:(
a b
c d

)(
e f
g h

)
=

(
ae + bg af + bh
ce + dg cf + dh

)
,

Which requires 4 additions and 8 multiplications.

(b) Show that O(log n) matrix multiplications suffice for computing Xn.

Xn can be computed with the following recurrence relation. This relation requires O(log n) matrix
multiplications to compute Xn by making one recursive call to determine Xbn/2c and then applying
a constant number of matrix multiplications.

Xn = I if n = 0

= X if n = 1

= Xn/2 ·Xn/2 if n is even

= X ·Xbn/2c ·Xbn/2c if n is odd

(c) Show that all intermediate results of fib3 are O(n) bits long.

We can use induction to prove the claim. Let

F =

(
0 1
1 1

)
.

Our base cases compute F 0 and F 1, which are O(1) bits long. Now, assume that the claim holds for
1 ≤ n < k. If k is odd, then F k = F · F bk/2c · F bk/2c. By the inductive hypothesis, computing this
requires multiplying O(1) bit numbers with O(k/2) bit numbers and then with O(k/2) bit numbers,
resulting in O(k) bit numbers. If k is even, then F k = F bk/2c · F bk/2c, which similarly has O(k) bit
numbers. Therefore, the claim holds by induction.

(d) Let M(n) be the running time of an algorithm for multiplying n-bit numbers, and assume that
M(n) = O(n2). Prove that the running time of fib3 is O(M(n) log n).

fib3 requires O(log n) multiplications, which each run in O(M(n)) time. Each of the O(log n) steps
of the algorithm does O(1) other work, so the algorithm requires O(M(n) log n) time.

(e) Can you prove that the running time of fib3 is O(M(n))?

We can prove this using induction. Our base cases are once again F 0 and F 1, which clearly require
O(M(n)) time. Now, assume that the claim holds for 1 ≤ n < k. If k is odd, then
F k = F · F bk/2c · F bk/2c. By the inductive hypothesis, determining F bk/2c requires
O(M(k/2) = O(M(k)) time. Multiplying these arrays requires O(M(k)) time as well, so F k can be
found in O(M(k)) time. Similarly, F k can be computed in O(M(k) time if k is even. Therefore, the
claim holds by induction.

5. Linear Search
PRE: An array
POST: An array index of key in A or -1 if not found
LINEARSEARCH(A, fst, lst, key) [1] lst < fst index = −1 key == A[fst] index = fst
LINEARSEARCH(A, fst + 1, lst, key)

Proof of Correctness
Inductive hypothesis: The proc LinearSearch correctly searches for the key for all arrays of size
lst− fst + 1 < n, ∀n > 0.
Base Case: Let n = 1(array size) Then, if key matches the only element, algorithm will correctly return
the only index fst = 1. If the key does not match, a recursive call is made with fst = 2, lst = 1,
returning a −1, performing the search correctly (This step could also be done taking
n = 0 = lst− fst + 1→ lst < fst and the proc. correctly returns −1 on the empty array.)
Inductive Step: For n = fst− lst + 1 The proc. checks if the first element matches the key. If it
matches, the index of the first element is returned. If not, it makes a recursive call on an array of size
n− 1 < n, which from the inductive assumption, works correctly. Hence the proc. works correctly.

Running time: Base Case check: O(1); Check of 1st element with key O(1); Recursive call: T (n− 1)
Hence we have T (n) = T (n− 1) + c (∃c > 0). Unrolling this is simple: T (n) = T (n− 2) + 2c etc etc Proc
terminates when T (n) = T (0) + n · c, giving T (n) ∈ O(n).

6. Trinary Search

(a) Base Case: n = 0 = lst− fst + 1, i.e, lst < fst and the proc. returns -1.
Ind. Hyp.: TRINSEARCH works correctly for all i/p of size n = k = lst− fst + 1, ∀k ≥ 0
Assume when n = k + 1, since n > 0, proc. jumps to line 4 and calculates thrd and twrd. If
key == A[thrd], then proc. return index and fst ≤ thrd ≤ lst, the proc. terminates correctly.
Else if key < A[thrd], since thrd− 1− fst + 1 = thrd− fst < k + 1, TRINSEARCH can return
correct index based on Ind. Hyp.. Else if key == A[twrd], then proc. return index and
fst ≤ twrd ≤ lst, the proc. terminates correctly. Else since
twrd− 1− thrd− 1 + 1 = twrd− thrd− 1 < k + 1 and lst− twrd− 1 + 1 = lst− twrd < k + 1,
TRINSEARCH can return correct index based on Ind. Hyp..

(b) Since proc. splits the arrays into 3 slices in each cycle, O(log3(n)) recursions are needed. Although
log3(n) < log2(n), it is in the equivalent class O(log(n)) as O(log2(n)). TRINSEARCH can be
thought of more efficient in terms of actual running time but the same efficient as BINARY
SEARCH in terms of Big-O notation.

